CETIFICATION

SDG No:

FA34891

Site:

BMSMC - Building 5 Area

Humacao, PR

Laboratory:

Accutest, Florida

Matrix:

Groundwater

SUMMARY:

Samples (Table 1) were collected on the BRSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken June 16-20, 2016 and were analyzed in Accutest, Florida that reported the data under SDG No.: FA34891. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
FA34891-1	MW-3	Groundwater	VOA TCL List
FA34891-2	MW-5	Groundwater	VOA TCL List
FA34891-3	MW-13	Groundwater	VOA TCL List
FA34891-4	BR-4	Groundwater	VOA TCL List
FA34891-5	MW-16	Groundwater	VOA TCL List
FA34891-6	MW-9	Groundwater	VOA TCL List
FA34891-7	MW-23S	Groundwater	VOA TCL List
FA34891-8	MW-21S	Groundwater	VOA TCL List
FA34891-9	TB062016	AQ – Trip Blank Water	VOA TCL List

Méndez

586492

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 15, 2016

Report of Analysis

Ву

DP

Page 1 of 2

Client Sample ID: MW-3

Lab Sample ID:

FA34891-1

Matrix: Method:

SW846 8260C

DF

1

AQ - Ground Water

Date Sampled: Date Received:

06/16/16 06/21/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

06/30/16

Prep Batch n/a

Q

J

Prep Date

n/a

Analytical Batch VJ5358

Run #1 Run #2

Purge Volume

J0977725.D

Run #1 Run #2 5.0 ml

File ID

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	0.52	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	0.37	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/i
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	2.3	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane a	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/I
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	10.0	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-3

Lab Sample ID: FA34891-1

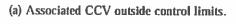
Matrix: Method:

Project:

AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR


Date Sampled: 06/16/16 Date Received: 06/21/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	1.8	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	0.33	1.0	0.20	ug/l	J
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	_
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/i	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	0.30	1.0	0.20	ug/l	J
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	0.58	1.0	0.26	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	94%		83-118%
17060-07-0	1,2-Dichloroethane-D4	86%		79-125%
2037-26-5	Toluene-D8	104%		85-112%
460-00-4	4-Bromofluorobenzene	101%		83-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client	Sample 1	ID: N	∕IW-5
--------	----------	-------	-------

Lab Sample ID:

FA34891-2

Matrix: Method: AQ - Ground Water

SW846 8260C

Date Sampled: 06/17/16 Date Received:

Q

06/21/16 Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 J0977759.D 1 07/01/16 DP n/a VJ5360 n/a Run #2 J0977730.D 5 06/30/16 DP n/a n/a VJ5358

	Purge Volume
Run #1	5.0 ml

Run #2 5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Unit
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	3.3	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene a	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene a	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	76.7	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	14.2	1.0	0.33	ug/l
					_

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: MW-5

Lab Sample ID: FA34891-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 06/17/16 Date Received: 06/21/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-lsopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	6.1	1.0	0.20	ug/I	
100-42-5	Styrene	ND	1.0	0.24	ug/I	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	290	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene a	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	0.46	1.0	0.20	ug/l	J
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	0.28	1.0	0.20	ug/l	J
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	273 b	10	1.5	ug/l	
95-47-6	o-Xylene	ND b	5.0	1.3	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	g	
1868-53-7	Dibromofluoromethane	95%	95%	83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	92%	84%	79-12	5%	
2037-26-5	Toluene-D8	103%	95%	85-11	2%	

4-Bromofluorobenzene

(b) Result is from Run# 2

460-00-4

ND = Not detected

MDL = Method Detection Limit

103%

97%

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

83-118%

B = Indicates analyte found in associated method blank

Report of Analysis

By

DP

Page 1 of 2

Client Sample ID: MW-13

File ID

5.0 ml

Lab Sample ID:

FA34891-3

Matrix: Method: AQ - Ground Water

DF

1

SW846 8260C

n/a

Prep Date

Date Sampled: 06/17/16 Date Received: 06/21/16

Q

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

06/30/16

Prep Batch **Analytical Batch** n/a VJ5358

Run #1 Run #2

Purge Volume

J0977731.D

Run #1

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Unit
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/I
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane a	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	1.0	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	10.4	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l
					_

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-13

Lab Sample ID: FA34891-3

Matrix: Method: AQ - Ground Water

SW846 8260C

Project:

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 06/17/16 Date Received: 06/21/16

Percent Solids: n/a

Q

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	4
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/i	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/i	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/I	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	102%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	90%		79-12	5%	
2037-26-5	Toluene-D8	98%		85-11	2%	
460-00-4	4-Bromofluorobenzene	107%		83-11	8%	

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Report of Analysis

By

DP

n/a

Page 1 of 2

Client Sample ID: BR-4

Lab Sample ID:

FA34891-4

Matrix: Method:

AQ - Ground Water SW846 8260C

DF

1

Date Sampled: 06/17/16

Date Received: 06/21/16

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

06/30/16

Percent Solids: n/a

n/a

Prep Date Prep Batch **Analytical Batch**

VJ5358

Run #1 Run #2

Purge Volume

Run #1 Run #2 5.0 ml

File ID

J0977732.D

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.63	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l	
75-71-8	Dichlorodifluoromethane a	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l	- 1
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l	
76-13-1	Freon 113	ND	1.0	0.32	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: BR-4

Lab Sample ID: FA34891-4

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 06/17/16 Date Received: 06/21/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	0.30	1.0	0.20	ug/l	J
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	•
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	96%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	89%		79-12		
2037-26-5	Toluene-D8	98%		85-11	12%	
400 00 4	4 Th					

(a) Associated CCV outside control limits.

4-Bromofluorobenzene

460-00-4

108%

83-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

DP

Page 1 of 2

Client Sample ID: MW-16

Lab Sample ID:

FA34891-5

Matrix: Method: AQ - Ground Water

SW846 8260C

Prep Date

n/a

Date Sampled: 06/17/16 Date Received: 06/21/16

DF

1

BMSMC, Building 5 Area, Humacao, PR

Analyzed

06/30/16

Percent Solids: n/a

Q

Project:

Analytical Batch Prep Batch n/a VJ5358

Run #1 Run #2

Purge Volume

J0977733.D

Run #1 Run #2

5.0 ml

VOA TCL List (SOM02.0)

File ID

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/I
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane a	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	8.0	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	1.6	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	70.2	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-16

Lab Sample ID: FA34891-5

Matrix: Method: AQ - Ground Water

SW846 8260C Project:

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 06/17/16 Date Received: 06/21/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	96%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	81%		79-12	5%	
2037-26-5	Toluene-D8	98%		85-11	2%	
460-00-4	4-Bromofluorobenzene	109%		83-11	8%	

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

DP

Prep Date

n/a

Page 1 of 2

Client Sample ID: MW-9

File ID

J0977734.D

Lab Sample ID:

FA34891-6

Matrix:

AQ - Ground Water

DF

1

Date Sampled: Date Received:

06/17/16 06/21/16

Method:

SW846 8260C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

06/30/16

Prep Batch n/a

Q

Analytical Batch VJ5358

Run #1 Run #2

Purge Volume

Run #1 Run #2

5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disuifide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/i
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane a	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l
					-

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-9

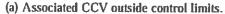
Lab Sample ID: FA34891-6

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260C


BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 06/17/16 Date Received: 06/21/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/i	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/i	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	113%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	92%		79-12	25%	
2037-26-5	Toluene-D8	120% b		85-11	l 2 %	

⁽b) Outside control limits; however, sample is ND.

4-Bromofluorobenzene

ND = Not detected

460-00-4

MDL = Method Detection Limit

110%

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

83-118%

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: MW-23S

Lab Sample ID:

FA34891-7

Matrix: Method: AO - Ground Water SW846 8260C

Date Sampled: 06/20/16

Percent Solids: n/a

Q

Date Received: 06/21/16

Project:

BMSMC, Building 5 Area, Humacao, PR

Run #1

DF J0977735.D 1

Analyzed 06/30/16

By DP Prep Date n/a

Prep Batch n/a

Analytical Batch VJ5358

Run #2

Purge Volume

Run #1 Run #2 5.0 ml

File ID

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Unit
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane a	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-23S

Lab Sample ID: FA34891-7

Matrix: Method:

AQ - Ground Water SW846 8260C

Project:

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 06/20/16 Date Received: 06/21/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limit	is.	
1868-53-7	Dibromofluoromethane	90%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	89%		79-12	5%	
2037-26-5	Toluene-D8	116% ^b		85-11	2%	
460-00-4	4-Bromofluorobenzene	104%		83-11	8%	

(b) Outside control limits; however, sample is ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

DP

Page 1 of 2

Client Sample ID: MW-21S

Lab Sample ID: FA34891-8

Matrix:

AQ - Ground Water SW846 8260C

Date Sampled: Date Received: 06/21/16

06/20/16

Method: Project:

BMSMC, Building 5 Area, Humacao, PR

Percent Solids: n/a

DF

1

Run #1 Run #2 Analyzed 07/01/16

Prep Date n/a

Prep Batch n/a

Analytical Batch

VJ5360

Purge Volume

Run #1 Run #2

5.0 ml

File ID

J0977760.D

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.63	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	0.82	1.0	0.27	ug/l	J
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1,0	0.39	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l	
75-35-4	1,1-Dichloroethylene	0.84	1.0	0.22	ug/l	J
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethylene a	ND	1.0	0.33	ug/i	
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
10061-02-6	trans-1,3-Dichloropropene a	ND	1.0	0.25	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l	
76-13-1	Freon 113	4.4	1.0	0.32	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Report of Analysis

Client Sample ID: MW-21S Lab Sample ID: FA34891-8 Matrix: AO - Ground Water Method:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 06/20/16 Date Received: 06/21/16

Percent Solids: n/a

Q

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l
79-20-9	Methyl Acetate	ND	20	5.0	ug/l
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/I
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/i
108-10-1	4-Methyl-2-pentanone (MIBK)		5.0	1.4	ug/I
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.24	ug/l
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l
127-18-4	Tetrachloroethylene a	ND	1.0	0.30	ug/l
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/I
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/i
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l
	m,p-Xylene	ND	2.0	0.30	ug/l
95-47-6	o-Xylene	ND	1.0	0.36	ug/l
00 17 0	o regione	ND	1.0	0.20	ug/1
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	is
1868-53-7	Dibromofluoromethane	97%		83-11	8%
17060-07-0	1,2-Dichloroethane-D4	95%		79-12	
2037-26-5	Toluene-D8	105%		85-11	
460-00-4	4-Bromofluorobenzene	103%		83-11	
(a) Associate	d DC	*4			

(a) Associated BS recovery outside control limits.

24 of 399

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Ву

DP

Page 1 of 2

Client Sample ID:

TB062016

Lab Sample ID:

FA34891-9

Matrix:

AQ - Trip Blank Water

Date Sampled: Date Received:

06/20/16 06/21/16

Method:

SW846 8260C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

File ID DF Analyzed Run #1 J0977761.D 1 07/01/16

Prep Batch n/a

Q

Prep Date

n/a

Analytical Batch VJ5360

Run #2

Purge Volume

Run #1 Run #2 5.0 ml

VOA TCL List (SOM02.0)

			- 23		
CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chioroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene a	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene a	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

fael Infant Méndez IC # 1889 CO LICENC

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS ACCU	ITEST / F/		4405 Vindend		PAGE _ [OF _ f
	TOTAL SALE	929-0200 FAX: 132329-3	Orderde F-	CEI Antonio Grafe II	GETTIMENU
Anderson Mithalland Associate	BMS 202	2016 Grow	duater	N III	Mainte Codes DW Dissay Water OW - Ground Water
2700 Westchater Purchase Ny Terry Taylor 911-257-0400	HUMACAO PR	Elling behavior (Falls Company have Elmon Acidense		Method 8260C	WYW - Weater SW - Sarkrow Weater SO - San Stu- Blantige SEZ2-Onderson OH - OL LO - Olmer toyld OL - Olmer toyld OL - Olmer toyld WW - Who Fig Who Fig.
Nesfor Rivera	Project Manager Collector	Afterflore,		5	Ell-Equipment Blank Fill-Ringe Dlank Till-Tilp Blank
Annual Field 93 / Point of Coffection	MECONICA Valid Dam Time	Language Manage Continues	5 3 5 5 3 5 3 7	9	LAB URE CHLY
1 MW-3 2 MW-5	6/15/16 1545	NE GW 3	3	X	
3 MW-13 4 BR-4	6/17/16 1243 6/17/16 1505	ME GW 3	3	X	
5 MW-16	G/17/14 1602 G/17/14 1831	NR GW 3	3	X	
7 MW-235 8 MW-215	G/20/16 1235 G/20/10 1547	NR GW 3	3	X	
9 TB 062016	6/20/16 1517	T6 2	2	X	
Ture carel Time (Business steet)		Date			
Bld. 18 Bendered Doyo 8 Day 10 Day 10 Day 3 Day 10 Day 1 Day 10 Day 1 Day 10 Day 1 other	Approved By (SOS) Annahout Pag-1 Bulay:	Commortal "A" (L.) Commortal "B" L. FILLY: (Lavel 344 B.) Pubusad Commortal "C" Al Date of Komm	HYASP Cotages	P-Isopropy	to Tetrahydroforan, tolone, Benzylchionob, etha bonzene,
1/ W 1/20 W G (20)	(k 1500 Ped E)	Atl/Honored = Property = QC Hardest below each three for	Amount of Parket Rear man	Sample Bryantary & G	My chlorik
3 Dept. Timp.	Monotreed By: 3 Manufreed By: \$		447 5:	Disk Stars. 1	and books tong 2.8
				T Transit Man	

FA34891: Chain of Custody

Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

FA34891

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

9

Location:

BMSMC - Building 5 Area

Humacao, PR

SUMMARY:

Nine (9) samples were analyzed for volatile organic compounds (VOCs) by method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Critical issues:

None

Major:

None

Minor:

None

Critical findings: Major findings: None None

Minor findings:

1. Initial calibration, initial calibration verification, and continuing calibration verification within the method and/or validation guidance document required performance criteria except for the cases described in the Data Review Worksheet. Closing calibration check verification included in data package.

trans-1,2-dichloroethene and trans-1,3-dichloropropene did not meet the initial calibration verification performance criteria. No action taken, professional judgment.

Dichlorodifluoromethane % difference outside the method performance criteria but within the validation guidance document required performance criteria (± 40 %) in continuing verification. No action taken.

- 2. DMCs recoveries within the required limits except for Toluene-d8. Other non-deuterated surrogates added to the samples within laboratory control limits. No action taken; % recoveries outside the laboratory control limit but within the validation guidance document performance criteria (80 120).
- 3. Bromoform results qualified as estimated (J) in sample FA34891-2.

Benzene and tetrachloroethane MS/MSD % recoveries results over the laboratory upper control limits. Analytes not detected in the sample batch, non-detects are accepted.

No qualification made based on RPD results.

MS % recovery result for dibromochloromethane less that lower laboratory control limit, but within generally acceptable control limits. No action taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 188

Signature:

Date:

July 15/2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA34891-1

Sample location: BMSMC Building 5 Area

Sampling date: 6/16/2016 Matrix: Groundwater

WEITIOD: 3	2000						
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	25	ug/L	1.0	-	U	Yes	
Benzene	1.0	ug/L	1.0	-	U	Yes	
Benzyl Chloride	2.0	ug/L	1.0		U	Yes	
Bromochloromethane	1.0	ug/L	1.0	12	U	Yes	
Bromodichloromethane	1.0	ug/L	1.0	15	U	Yes	
Bromoform	1.0	ug/L	1.0	-	U	Yes	
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes	
Carbon disulfide	0.52	ug/L	1.0	J	UJ	Yes	
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes	
Chlorobenzene	0.37	ug/L	1.0	J	UJ	Yes	
Chloroethane	1.0	ug/L	1.0	-	U	Yes	
Chloroform	1.0	ug/L	1.0	2	U	Yes	
Cyclohexane	2.3	ug/L	1.0		-	Yes	
Dibromochloromethane	1.0	ug/L	1.0		U	Yes	
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	4	U	Yes	
1,2-Dibromoethane	2.0	ug/L	1.0		U	Yes	
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes	
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes	
1,3-Dichlorobenzene	1.0	ug/L	1.0	5	U	Yes	
1,4-Dichlorobenzene	1.0	ug/L	1.0	2	U	Yes	
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes	
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes	

trans-1,2-Dichloroethene	1.0	ug/L	1.0	154	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	3 - 3	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	10	ug/L	1.0	-	U	Yes
Isopropylbenzene	10.0	ug/L	1.0	-	-	Yes
p-Isopropyitoluene	1.0	ug/L	1.0	-	U	Yes
Methyl Acetate	20	ug/L	1.0	_	U	Yes
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes
Methyl Chloride	2.0	ug/L	1.0	17	U	Yes
Methylcyclohexane	1.8	ug/L	1.0		-	Yes
Methylene chloride	5.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	U	Yes
Methyl Tert Butyl Ether	5.8	ug/L	1.0	12	-	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	2	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	-	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0		U	Yes
Tetrachloroethene	1.0	ug/L	1.0		U	Yes
Tetrahydrofuran	5.0	ug/L	1.0		U	Yes
Toluene	0.33	ug/L	1.0	J	UJ	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	<u></u>	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
Trichloroethene	1.0	ug/L	1.0		U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	2	U	Yes
1,2,4-Trimethylbenzene	0.30	ug/L	1.0	j	UJ	Yes
Vinyl chloride	1.0	ug/L	1.0	2	U	Yes
m,p-Xylene	2.0	ug/L	1.0	Ψ.	U	Yes
o-Xylene	0.58	ug/L	1.0	J	UJ	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 6/17/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	25	ug/L	1.0	-	U	Yes	
Benzene	3.3	ug/L	1.0	_		Yes	
Benzyl Chloride	2.0	ug/L	1.0	-	Ü	Yes	
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes	
Bromodichloromethane	1.0	ug/L	1.0	_	U	Yes	
Bromoform	1.0	ug/L	1.0	-	LU	Yes	
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes	
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes	
Carbon tetrachloride	1.0	ug/L	1.0	~	U	Yes	
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes	
Chloroethane	2.0	ug/L	1.0	2	U	Yes	
Chloroform	1.0	ug/L	1.0	_	U	Yes	
Cyclohexane	1.0	ug/L	1.0		U	Yes	
Dibromochloromethane	1.0	ug/L	1.0	2	U	Yes	
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes	
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes	
Dichlorodifluoromethane	2.0	ug/L	1.0	*	U	Yes	
1,2-Dichlorobenzene	1.0	ug/L	1.0	*	U	Yes	
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes	
1,4-Dichlorobenzene	1.0	ug/L	1.0	2.0	U	Yes	
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,2-Dichloroethane	1.0	ug/L	1.0	_	U	Yes	
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes	
cis-1,2-Dichloroethene	1.0	ug/L	1.0		U	Yes	
trans-1,2-Dichloroethene	1.0	ug/L	1.0	4	U	Yes	
1,2-Dichloropropane	1.0	ug/L	1.0	+0	U	Yes	

cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	_	U	Yes
Ethylbenzene	76.7	ug/L	1.0	19	-	Yes
Freon 113	1.0	ug/L	1.0	100	U	Yes
2-Hexanone	10	ug/L	1.0	2	Ü	Yes
Isopropylbenzene	14.2	ug/L	1.0	-	-	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	_	U	Yes
Methyl Acetate	20	ug/L	1.0	_	U	Yes
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes
Methyl Chloride	2.0	ug/L	1.0	1	U	Yes
Methylcyclohexane	1.0	ug/L	1.0	-	U	Yes
Methylene chloride	5.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0		U	Yes
Methyl Tert Butyl Ether	6.1	ug/L	1.0	*	-	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	-	U	Yes
Tert-Butyl Alcohol	290	ug/L	1.0	-	-	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	7.	U	Yes
Toluene	0.46	ug/L	1.0	J	UJ	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	0	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	2	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	41	U	Yes
1,2,4-Trimethylbenzene	0.28	ug/L	1.0	5.	U	Yes
Vinyl chloride	1.0	ug/L	1.0	2	U	Yes
m,p-Xylene	273	ug/L	5.0	-	U	Yes
o-Xylene	5.0	ug/L	5.0	75	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 6/17/2016

Matrix: Groundwater

METHOD. 0	200C					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	1.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	2.3	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	-	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	_	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes

cis-1,3-Dichloropropene	1.0	ug/L	1.0		U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
Ethylbenzene	1.0	ug/L	1.0	_	Ü	Yes
Freon 113	10.4	ug/L	1.0	_		Yes
2-Hexanone	10	ug/L	1.0	-	U	Yes
Isopropylbenzene	1.0	ug/L	1.0		Ü	Yes
p-Isopropyltoluene	1.0	ug/L	1.0		Ū	Yes
Methyl Acetate	20	ug/L	1.0	-	Ū	Yes
Methyl Bromide	2.0	ug/L	1.0		Ū	Yes
Methyl Chloride	2.0	ug/L	1.0	-	Ū	Yes
Methylcyclohexane	1.0	ug/L	1.0	2	Ū	Yes
Methylene chloride	5.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0		U	Yes
Methyl Tert Butyl Ether	5.8	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	_	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	_	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	~	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	2	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	2.	U	Yes
Toluene	1.0	ug/L	1.0	2	U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	2	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	+,	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0		U	Yes
Trichloroethene	1.0	ug/L	1.0		U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0		U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0		U	Yes
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes
m,p-Xylene	2.0	ug/L	1.0	-	U	Yes
o-Xylene	1.0	ug/L	1.0	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 6/17/2016 Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	Ų	Yes
Carbon disulfide	2.0	ug/L	1.0	2	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	*	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	7.	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	2.7	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	~]	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	0_	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0		U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0		U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes

1,2-Dichloropropane	1.0	ug/L	1.0		U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	_	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
Ethylbenzene	1.0	ug/L	1.0		U	Yes
Freon 113	1.0	ug/L	1.0	2	U	Yes
2-Hexanone	10	ug/L	1.0	-	U	Yes
Isopropylbenzene	1.0	ug/L	1.0	5	U	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	2	U	Yes
Methyl Acetate	20	ug/L	1.0		_ U	Yes
Methyl Bromide	2.0	ug/L	1.0	2	U	Yes
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	1.0	ug/L	1.0		U	Yes
Methylene chloride	5.0	ug/L	1.0	2	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0		U	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	*	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	-	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0		U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	2	U	Yes
Toluene	1.0	ug/L	1.0	-	U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	2	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	+	U	Yes
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	5	U	Yes
1,2,4-Trimethylbenzene	0.30	ug/L	1.0	J	UJ	Yes
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes
m,p-Xylene	2.0	ug/L	1.0	π.	U	Yes
o-Xylene	1.0	ug/L	1.0	2	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 6/17/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0		U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0		U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	~	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	Ü	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	2	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	8.0	ug/L	1.0	50	-	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.6	ug/L	1.0	-	-	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	2	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0		U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	100	U	Yes

cis-1,3-Dichloropropene	1.0	ug/L	1.0	2	U	Yes	
trans-1,3-Dichloropropene	1.0	ug/L	1.0	_	Ū	Yes	
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes	
Freon 113	70.2	ug/L	1.0	2	-	Yes	
2-Hexanone	10	ug/L	1.0	_	U	Yes	
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes	
p-Isopropyltoluene	1.0	ug/L	1.0	2	U	Yes	
Methyl Acetate	20	ug/L	1.0		U	Yes	
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes	
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes	
Methylcyclohexane	1.0	ug/L	1.0	-	U	Yes	
Methylene chloride	5.0	ug/L	1.0	-	U	Yes	
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	U	Yes	
Methyl Tert Butyl Ether	1.0	ug/L	1.0		U	Yes	
Styrene	1.0	ug/L	1.0	2	U	Yes	
Tert-Amyl Alcohol	20	ug/L	1.0	-	U	Yes	
Tert-Butyl Alcohol	20	ug/L	1.0	-	U	Yes	
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	2	U	Yes	
Tetrachloroethene	1.0	ug/L	1.0	6	U	Yes	
Tetrahydrofuran	5.0	ug/L	1.0	-	U	Yes	
Toluene	1.0	ug/L	1.0	_	U	Yes	
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	±.	U	Yes	
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	21	U	Yes	
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	U	Yes	
Trichloroethene	1.0	ug/L	1.0	25	U	Yes	
Trichlorofluoromethane	2.0	ug/L	1.0		U	Yes	
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	-	U	Yes	
Vinyl chloride	1.0	ug/L	1.0		U	Yes	
m,p-Xylene	2.0	ug/L	1.0		U	Yes	
o-Xylene	1.0	ug/L	1.0		U	Yes	

Sample location: BMSMC Building 5 Area

Sampling date: 6/17/2016

Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0		U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	_	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	~	U	Yes
Chloroform	1.0	ug/L	1.0	#	U	Yes
Cyclohexane	1.0	ug/L	1.0	**	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0		U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	70	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0		U	Yes
1,2-Dichlorobenzene	8.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	(.5)	U	Yes
1,4-Dichlorobenzene	1.6	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes

cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	10	ug/L	1.0	_	U	Yes
Isopropylbenzene	1.0	ug/L	1.0	2	U	Yes
p-lsopropyltoluene	1.0	ug/L	1.0	-	U	Yes
Methyl Acetate	20	ug/L	1.0	_	U	Yes
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	1.0	ug/L	1.0	2	U	Yes
Methylene chloride	5.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0		U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	2	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	-	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	20	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	-	U	Yes
Toluene	1.0	ug/L	1.0		U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	12	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0		U	Yes
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes
m,p-Xylene	2.0	ug/L	1.0	-	U	Yes
o-Xylene	1.0	ug/L	1.0	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 6/20/2016 Matrix: Groundwater

WILTHOD, 6	1200C						
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	25	ug/L	1.0	-	U	Yes	
Benzene	1.0	ug/L	1.0	-	U	Yes	
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes	
Bromochloromethane	1.0	ug/L	1.0	*	U	Yes	
Bromodichloromethane	1.0	ug/L	1.0	7.	U	Yes	
Bromoform	1.0	ug/L	1.0	일	U	Yes	
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes	
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes	
Carbon tetrachloride	1.0	ug/L	1.0	21	U	Yes	
Chlorobenzene	1.0	ug/L	1.0	*	U	Yes	
Chloroethane	2.0	ug/L	1.0	-	U	Yes	
Chloroform	1.0	ug/L	1.0	4	U	Yes	
Cyclohexane	1.0	ug/L	1.0	*	U	Yes	
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes	
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes	
1,2-Dibromoethane	2.0	ug/L	1.0	7.1	U	Yes	
Dichlorodifluoromethane	2.0	ug/L	1.0		U	Yes	
1,2-Dichlorobenzene	1.0	ug/L	1.0		U	Yes	
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes	
1,4-Dichlorobenzene	1.0	ug/L	1.0		U	Yes	
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes	
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes	
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes	
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes	

cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	2	U	Yes
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	10	ug/L	1.0	2	U	Yes
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes
p-isopropyltoluene	1.0	ug/L	1.0	-	U	Yes
Methyl Acetate	20	ug/L	1.0	~	U	Yes
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	1.0	ug/L	1.0	-	U	Yes
Methylene chloride	5.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	2	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0	5	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	4	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	-	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	2	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	~	U	Yes
Toluene	1.0	ug/L	1.0	-	U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	7.0	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	2	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	*	U	Yes
Trichloroethene	1.0	ug/L	1.0	+	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	2	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	*:	U	Yes
Vinyl chloride	1.0	ug/L	1.0	8-	U	Yes
m,p-Xylene	2.0	ug/L	1.0	-	U	Yes
o-Xylene	1.0	ug/L	1.0	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 6/20/2016 Matrix: Groundwater

WEITIOD: 3							
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	25	ug/L	1.0	-	U	Yes	
Benzene	1.0	ug/L	1.0	-	U	Yes	
Benzyl Chloride	1.0	ug/L	1.0	-	U	Yes	
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes	
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes	
Bromoform	1.0	ug/L	1.0	-	U	Yes	
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes	
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes	
Carbon tetrachloride	1.0	ug/L	1.0	_	U	Yes	
Chlorobenzene	1.0	ug/L	1.0	-	Ų	Yes	
Chloroethane	2.0	ug/L	1.0	-	U	Yes	
Chloroform	1.0	ug/L	1.0	-	U	Yes	
Cyclohexane	1.0	ug/L	1.0	-	U	Yes	
Dibromochloromethane	1.0	ug/L	1.0	27	U	Yes	
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes	
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes	
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes	
1,2-Dichlorobenzene	0.82	ug/L	1.0	J	UJ	Yes	
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes	
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes	
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,1-Dichloroethene	0.84	ug/L	1.0	J	UJ	Yes	
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes	
trans-1,2-Dichloroethene	1.0	ug/L	1.0		U	Yes	
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes	

cis-1,3-Dichloropropene	1.0	ug/L	1.0		U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	2	U	Yes
Ethylbenzene	1.0	ug/L	1.0	, .	U	Yes
Freon 113	4.4	ug/L	1.0		-	Yes
2-Hexanone	10	ug/L	1.0	-	U	Yes
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	-	U	Yes
Methyl Acetate	20	ug/L	1.0	-	U	Yes
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes
Methyl Chloride	2.0	ug/L	1.0	2	U	Yes
Methylcyclohexane	1.0	ug/L	1.0	-	U	Yes
Methylene chloride	5.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	2	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	*	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	2	U	Yes
Tetrachloroethene	1.0	ug/L	1.0		U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	*	U	Yes
Toluene	1.0	uģ/L	1.0	2	Ų	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	+6	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0		U	Yes
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	-	U	Yes
Vinyl chloride	1.0	ug/L	1.0	1/2	U	Yes
m,p-Xylene	2.0	ug/L	1.0	-	U	Yes
o-Xylene	1.0	ug/L	1.0	-	U	Yes
		·				

Sample ID: FA34891-9

Sample location: BMSMC Building 5 Area

Sampling date: 6/20/2016 Matrix: Groundwater

METHOD: 8260C

Acetone 25 Benzene 1.0	ug/L ug/L	1.0	-		
Benzene 1.0	ug/L			U	Yes
		1.0	-	U	Yes
Benzyl Chloride 1.0	ug/L	1.0	-	U	Yes
Bromochloromethane 1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane 1.0	ug/L	1.0	-	U	Yes
Bromoform 1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK) 5.0	ug/L	1.0	-	U	Yes
Carbon disulfide 2.0	ug/L	1.0	_	U	Yes
Carbon tetrachloride 1.0	ug/L	1.0	-	U	Yes
Chlorobenzene 1.0	ug/L	1.0	-	U	Yes
Chloroethane 2.0	ug/L	1.0	-	U	Yes
Chloroform 1.0	ug/L	1.0	_	U	Yes
Cyclohexane 1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane 1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane 5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane 2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane 2.0	ug/L	1.0	** -	U	Yes
1,2-Dichlorobenzene 1.0	ug/L	1.0	_	U	Yes
1,3-Dichlorobenzene 1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene 1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane 1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane 1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene 1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene 1.0	ug/L	1.0	1.7	U	Yes
trans-1,2-Dichloroethene 1.0	ug/L	1.0	12	U	Yes
1,2-Dichloropropane 1.0	ug/L	1.0	-	U	Yes

cis-1,3-Dichloropropene	1.0	ug/L	1.0		U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
Ethylbenzene	1.0	ug/L	1.0	2	U	Yes
Freon 113	1.0	ug/L	1.0		U	Yes
2-Hexanone	10	ug/L	1.0	_	U	Yes
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	-	U	Yes
Methyl Acetate	20	ug/L	1.0	2	U	Yes
Methyl Bromide	2.0	ug/L	1.0		U	Yes
Methyl Chloride	2.0	ug/L	1.0		U	Yes
Methylcyclohexane	1.0	ug/L	1.0	_	U	Yes
Methylene chloride	5.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	2	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	2	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	-	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	÷.	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	18	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0		U	Yes
Toluene	1.0	ug/L	1.0	1150	U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	_	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	4	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	5.40	U	Yes
Vinyl chloride	1.0	ug/L	1.0		U	Yes
m,p-Xylene	2.0	ug/L	1.0	-	U	Yes
o-Xylene	1.0	ug/L	1.0	-	U	Yes

Project Number:_FA34891 Date:June_16-20,_2016 Shipping date:June_20,_2016 EPA Region:2
GANIC PACKAGE Pata Validation
were created to delineate required validation using professional judgment to make more of the data users. The sample results were lance documents in the following order of the SOP No. HW-33A Revision 0 SOM02.2 The QC criteria and data validation action imary guidance document, unless otherwise
data package received ha data summarized. The data review for VOC Sample matrix:Groundwater
Sample matrix:Groundwater
X Laboratory Control SpikesX Field DuplicatesX Calibrations
X Compound IdentificationsX Compound QuantitationX Quantitation Limits

REVIEW OF VOLATILE ORG

Low/Medium Volatile D The following guidelines for evaluating volatile organics n actions. This document will assist the reviewer in u е informed decision and in better serving the needs of е assessed according to USEPA data validation guid)f precedence: USEPA Hazardous Waste Support Sect Low/Medium Volatile Data Validation. July, 2015. S listed on the data review worksheets are from the pri е noted. The hardcopied (laboratory name) __Accutest___ S been reviewed and the quality control and performance included: Lab. Project/SDG No.: ____FA34891____ No. of Samples: _____9__ Trip blank No.: _____FA34891-9____ Field blank No.: ______ Equipment blank No.:______ Field duplicate No.:_____ _X__ Data Completeness _X__ Holding Times X___ GC/MS Tuning X Internal Standard Performance X___ Blanks X___ Surrogate Recoveries __X___ Matrix Spike/Matrix Spike Duplicate _OverallComments:___VOA_TCL_list_(SW846_8260C) **Definition of Qualifiers:** J-Estimated results U-Compound not detected R-Rejected data Estimated nandetect IJJ-Reviewer: Date:___July_15,_2016

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
- O		
W.		
(%)		
	-	
		3 3 3 3 3 3
		V
	30.	V-
	· · · · · · · · · · · · · · · · · · ·	
	-8 - 8 - 8 - 18	
	7	23 (SART)

All criteria were met _	Х
Criteria were not met	
and/or see below	-

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	рН	ACTION
-				
All samples anal	 yzed within method red) commended holding tim	e. Sampl	es properly preserved.
		<u> </u>		

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 2.8° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, T = 4° C \pm 2° C), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (J-) and non-detected compounds as estimated (UJ).

Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

			Action		
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
	No	≤ 7 days	No qualification		
Aqueous	No	> 7 days	J	R	
riqueous	Yes	≤ 14 days	No q	ualification	
	Yes	> 14 days	J R		
Non-Aqueous	No	≤ 14 days	J	Professional judgment, UJ or R	
Non-Aqueous	Yes	≤ 14 days	No qualification		
	Yes/No	> 14 days	J	R	
TCLP/SPLP	Yes	≤ 14 days	No qualification		
TCLP/SPLP	No	> 14 days	J	R	

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qualification		
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J R		
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification		
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J R		
Sample temperature outside 4°C ± 2°C upon receipt at the laboratory		Use profess	ional judgment	
Holding times grossly exceeded		J R		

All criteria were metX	_
Criteria were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X__ The BFB performance results were reviewed and found to be within the specified criteria.

_X___BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

Use professional spectrum of the r	judgment to determine whe nass calibration compound.	ether associated data should be o	ualified based on the
List	the	samples	affected:
	n is in error off conscieted de		

If mass calibration is in error, all associated data are rejected.

All criteria were mei
Criteria were not met
and/or see belowX

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:06/21/1	16;_07/01/16	
Dates of continuing (initial) calibration:		
Dates of continuing calibration:	06/30/16	`
Dates of ending calibration:		
Instrument ID numbers:	GCMSJ	Ta.
Matrix/Level:	Aqueous/low	

DATE	LAB FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
GCMSJ				
06/30/16	cc5340-5	40.2	Dichlorodifluoromethane*	FA34891-1; to -7
07/01/16	icc5395-5	-22.7	trans-1,2-dichloroethene	FA34891-2; -8; -9
		-23.6	trans-1,3- dichloropropene	
	1			

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the method and validation guidance document required performance criteria except in the cases described in this document. Closing calibration check verification included in data package.

Analytes not meeting the initial calibration verification criteria not qualified, professional judgment.

* - % difference outside the method performance criteria but within the validation guidance document required performance criteria (± 40 %). No action taken.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum	Maximum	Opening	Closing
	RRF	%RSD	Maximum %D1	Maximum %D
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0
Chloromethane	0.010	20.0	±30.0	±50.0
Vinyl chloride	0.010	20.0	±25.0	±50.0
Bromomethane	0.010	40.0	±30.0	±50.0
Chloroethane	0.010	40.0	±25.0	±50.0
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene	0.060	20.0	±20.0	±25.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	25.0	±25.0	±50.0
Acetone	0.010	40.0	±40.0	±50.0
Carbon disulfide	0.100	20.0	±25.0	±25.0
Methyl acetate	0.010	40.0	±40.0	±50.0
Methylene chloride	0.010	40.0	±30.0	±50.0
trans-1.2-Dichloroethene	0.100	20.0	±20.0	±25.0
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0
1,1-Dichloroethane	0.300	20.0	±20.0	±25.0
cis-1,2-Dichloroethene	0.200	20.0	±20.0	±25.0
2-Butanone	0.010	40.0	±40.0	±50.0
Bromochloromethane	0.100	20.0	±20.0	±25.0
Chloroform	0.300	20.0	±20.0	±25.0
1,1,1-Trichloroethane	0.050	20.0	±25.0	±25.0
Cyclohexane	0.010	40.0	±25.0	±50.0
Carbon tetrachloride	0.100	20.0	±25.0	±25.0
Benzene	0.200	20.0	±20.0	±25.0
1,2-Dichloroethane	0.070	20.0	±20.0	±25.0
Trichloroethene	0.200	20.0	±20.0	±25.0
Methylcyclohexane	0.050	40.0	±25.0	±50.0
1.2-Dichloropropane	0.200	20.0	±20.0	±25.0
Bromodichloromethane	0.300	20.0	±20.0	±25.0
cis-1,3-Dichloropropene	0.300	20.0	±20.0	±25.0
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0
Toluene	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene	0.200	20.0	±20.0	±25.0
1,1,2-Trichloroethane	0.200	20.0	±20.0	±25.0
Tetrachloroethene	0.100	20.0	±20.0	±25.0
2-Hexanone	0.010	40.0	±40.0	±50.0
Dibromochloromethane	0.200	20.0	±20.0	±25.0
1,2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	±20.0	±25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
m.p-Xylene	0.200	20.0	±20.0	±25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1.1.2.2-Tetrachloroethane	0,200	20.0	±25.0	±25.0
1,3-Dichlorobenzene	0,500	20.0	±20.0	±25.0
1,4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1,2,4-Trichlorobenzene	0.400	20.0	±30.0	±50.0
1,2,3-Trichlorobenzene	0.400	25.0	±30.0	±50.0
Deuterated Monitoring Compound				
Vinyl chloride-d3	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene-d2	0.050	20.0	±25.0	±25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1.2-Dichloroethane-da	0,060	20.0	±25.0	±25.0
Benzene-de	0.300	20.0	±20.0	±25.0
1,2-Dichloropropane-de	0.200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	±25.0
trans-1.3-Dichloropropene-d4	0.200	20.0	±20.0	±25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1,1,2,2-Tetrachloroethane-d2	0.200	20.0	±25.0	±25.0
1,2-Dichlorobenzene-d4	0.400	20.0	±20.0	±25.0

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - i. Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action			
	Detect	Non-detect		
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R		
Initial Calibration not performed at the specified concentrations	J	UJ		
RRF < Minimum RRF in Table for target analyte	Use professional judgment J+ or R	R		
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification		
*•RSD > Maximum *•RSD in Table for target analyte	J	Use professional judgment		
*•RSD = Maximum *•RSD in Table for target analyte	No qualification	No qualification		

All criteria were metX
Criteria were not met
and/or see below _

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis - Summary

Criteria for Opening	Criteria for	A	ction
CCV	Closing CCV	Detect	Non-detect
CCV not performed at required frequency	CCV not performed at required	Use professional judgment	Use professional
	frequency	R	judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF = Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	J	UJ
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	% D within the inclusive Closing Maximum % D limits in Table for target analyte	No qualification	No qualification

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chioride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

ANALYZED	LABID	MATRIX	COMPOUND	CONCENTRATION UNITS
Field/Equipme				
if field or trip bl the method blar	anks are presei nks.	nt, the data revie	ewer should evaluate thi	is data in a similar fashion a
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	alytes_detected_ ge	_in_the_trip_blar	nkNo_field/equipment_	_blanks_analyzed_with
	<u> </u>	<u> </u>		

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL *	< CRQL*	Report CRQL value with a U
₽		≥ CRQL*	No qualification required
Method,		< CRQL*	Report CRQL value with a U
Storage, Field,	> CRQL * = CRQL*	≥ CRQL* and ≤	Report blank value for sample
Trip,		blank concentration	concentration with a U
TCLP/SPLP LEB,		≥ CRQL* and > blank concentration	No qualification required
Instrument**		≤ CRQL*	Report CRQL value with a U
		> CRQL*	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					100000
					THE REAL PROPERTY.
				1000	
The state of the s					
la company of the com					

All criteria were met __X__ Criteria were not met and/or see below ___

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1,1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1,2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1,2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1,1,2,2-	65-120	45-120
Tetrachloroethane-d2		
1,2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID	Date	DMCs	% Recovery	Action
FA34891-6	06/30/16	Toluene-d8	120 %	No action
FA34891-7	06/30/16	Toluene-d8	116 %	No action

DMCs recoveries within the required limits except for the cases described in this document. Other non-deuterated surrogates added to the samples within laboratory control limits. No action taken, % recoveries outside the laboratory control limit but within the guidance document performance criteria (80 – 120).

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

- 1. For any recovery greater than the upper acceptance limit:
 - Qualify detected associated volatile target compounds as estimated high (J+).
 - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action			
Criteria	Detect Associated Compounds	Non-detected Associated Compounds		
%R < 10%	J-	R		
10% ≤ %R < Lower Acceptance Limit	J-	UJ		
Lower Acceptance Limit \leq %R \leq Upper Acceptance Limit	No qualification	No qualification		
%R > Upper Acceptance Limit	J+	No qualification		

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-d3 (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d: (DMC-3)
Vinyl chloride	Dichlorodiffuoromethane Chloromethane Bromomethane Chloroethane Carbon disulfide	trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1-Dichloroethene
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-d4 (DMC-6)
Acetone 2-Butanone	1,1-Dichloroethane Bromochloromethane Chloroform Dibromochloromethane Bromoform	Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifluoroethane Methyl acetate Methylene chloride Methyl-tert-butyl ether 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dibromoethane 1,2-Dichloroethane
Benzene-ds (DMC-7)	1,2-Dichloropropane-d6 (DMC-8)	Toluene-ds (DMC-9)
Benzene	Cyclohexane Methylcyclohexane 1.2-Dichloropropane Bromodichloromethane	Trichloroethene Toluene Tetrachloroethene Ethylbenzene o-Xylene m.p-Xylene Styrene Isopropylbenzene
trans-1,3-Dichloropropene-d4 (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachioroethane-d2 (DMC-12)
cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	4-Methyl-2-pentauone 2-Hexanone	1,1,2,2,-Tetrachloroethane 1,2-Dibromo-3-chloropropane
1,2-Dichlorobenzene-d4 (DMC-13) Chlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene		

All criteria were met _____ Criteria were not met and/or see below __X__

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:_ FA34891-2MS/2MSD	Matrix/Level:Aqueous
The QC reported here applies to the following samples: FA34891-1, FA34891-2, FA34891-3, FA34891-4, FA34891-5	Method: SW846 8260C 5. FA34891-6. FA34891-7

Compound	FA34891 ug/l	I-2 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
Benzene Bromoform Dibromochloromethane 1,1-Dichloroethane 1,1,2,2-	3.3 ND ND ND	J	125 125 125 125	132 70.4 95.4 123	103 56* 76* 98	125 125 125 125	158 81.6 100 147	124* 65* 80 118	18* 15 5 18*	81-122/14 66-123/21 78-122/19 81-122/15
Tetrachloroethane	ND		125	151	121*	125	153	122*	1	72-120/14

Note: Bromoform results qualified as estimated (J) in sample FA34891-2.

Benzene and tetrachloroethane MS/MSD % recoveries results over the laboratory upper control limits. Analytes not detected in the sample batch, non-detects are accepted.

No qualification made based on RPD results.

MS % recovery result for dibromochloromethane less that lower laboratory control limit, but within generally acceptable control limits. No action taken, professional judgment.

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

if the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met	
Criteria were not met	
and/or see belowX	

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? **Yes** or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

Note: No action taken, professional judgment.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept_

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met Criteria were not met and/or see below	
IX.	FIELD/LABORATORY DUPLICATE PRECISION		
	Sample IDs:	Matrix:	

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/labora assess precision	n. RPD	within required crite	! this data package. MS/! ria, < 50 % for target an reporting in sample and	alytes de	tected at concentration

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met __X__ Criteria were not met and/or see below ____

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts within the required criteria.

Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or midpoint standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Act	tion
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J- No qualificati	
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J+ R	
Area counts ≥ 50% but ≤ 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf ** Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

All criteria were met>	_
Criteria were not met	
and/or see below	

TARGET COMPOUND IDENTIFICATION

\sim						
C	m	÷	es.	m	ጫ	B
u		II.		r K	а	٠

Is the Relative Retention Times (RRTs) of reported compounds within ± 0.06 RRT units of the standard RRT [opening Continuing Calibration Verification (CCV) or mid-point standard from the initial calibration]. Yes? or No?

List compounds not meeting the criteria described above:

Sample ID	Compounds	Actions
		<u></u>
		<u></u>

Mass spectra of the sample compound and a current laboratory-generated standard [i.e., the mass spectrum from the associated calibration standard (opening CCV or mid-point standard from initial calibration)] must match according to the following criteria:

- a. All ions present in the standard mass spectrum at a relative intensity greater than 10% must be present in the sample spectrum.
- b. The relative intensities of these ions must agree within ±20% between the standard and sample spectra (e.g., for an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance must be between 30-70%).
- c. lons present at greater than 10% in the sample mass spectrum, but not present in the standard spectrum, must be evaluated by a reviewer experienced in mass spectral interpretation.

List compounds not meeting the criteria described above:

Sample ID	Compounds	Actions
 -		

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

List TICs

Sample ID	Compound	Sample ID	Compound
	· · · · · · · · · · · · · · · · · · ·		

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J R		

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

FA34891-1

cyclohexane

RF = 0.472

[] = (10025)(50)/(0.472)(466913) = 2.27 ppb Ok

В.	Percent Solids			
	List samples which have ≥ 70 % solids			

All criteria were met _X_
Criteria were not met
and/or see below

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
FA34891-2	5 X	Several analytes over calibration range
		and the second
		- 1970.
	Talk and the same of the same	
	<u> </u>	

All criteria were met __X___ Criteria were not met

OTHE	R ISSUES		and/or see below
A.	System P	erformance	
List sa	mples quali	fied based on the degradation of system per	formance during simple analysis:
Sample		Comments	Actions
_No_d	egradation_	of_system_performance_observed.	
Action:			
degrad	led during s	judgment to qualify the data if it is dete sample analyses. Inform the Contract Labo on of system performance which significantly	oratory Program COR any action as a
B.	Overall As	sessment of Data	
List sa	mples quali	fied based on other issues:	
Sample	e (D =======		Actions
_No_a	dditional_is: e_used_for_	sues_observed_that_require_qualification_o _decission_purposes	f_the_dataResults_are_valid_and
Action: 1.	qualified back Write a brid the Contra	ssional judgment to determine if there is an ased on the Quality Control (QC) criteria previet narrative to give the user an indication of the ct Laboratory COR the action, any inconsister (G) Narrative. If sufficient information on the	ously discussed. e analytical limitations of the data. Inform ncy of the data with the Sample Delivery

data is available, the reviewer should include their assessment of the usability of the data within

the given context. This may be used as part of a formal Data Quality Assessment (DQA).